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Wave disturbances to baroclinic flows produce cyclones in the atmosphere and eddies 
in the oceans and have been extensively studied in laboratory experiments with 
differentially heated annuli of rotating fluid. Related analytical studies have 
concentrated mainly on the development of slowly growing waves on laterally 
uniform zonal flows. Neutral inviscid waves on such flows do not advect their own 
potential vorticity field whereas neutral waves on most laterally sheared baroclinic 
flows do. Scaling arguments suggest that on these laterally sheared flows the 
harmonics generated by the neutral waves play the dominant role in arresting the 
initial growth of weakly unstable waves. The arrest of a wave is chiefly accomplished 
by fully nonlinear advection within a critical layer centred on the wave’s steering 
level whose depth is proportional to the wave’s amplitude. Explicit numerical 
solutions illustrating these points are presented for a case in which the critical level 
is non-singular and the inviscid calculations comparatively straightforward. The 
stability of the solutions and the effects of diffusive fluxes on them are discussed. 
Potential vorticity diagnostics for a numerical simulation of a wave flow in a rotating 
annulus near the axisymmetric transition show that distortion of the wave’s 
potential vorticity field is mainly confined to the vicinity of the steering level. 
Assumptions and approximations made in the explicit calculations which are of 
doubtful validity for this flow are highlighted. 

1. Introduction 
The growth and equilibration of mid-latitude weather systems is a subtle 

phenomenon. Some insight into it was gained by Charney (1947) and Eady (1949) 
who investigated the stability of baroclinic zonal flows to waves of small amplitude 
growing without changing shape (i.e. of normal mode form), a problem which 
contains some of the essential physics of the phenomenon in a form which is 
amenable to mathematical analysis. Later Charney & Stern (1962) and Pedlosky 
( 1964) developed the quasi-geostrophic equations which provide the most convenient 
mathematical framework for the analytical study of the initial growth of cyclones. 
According to these equations (see e.g. Pedlosky 1 9 8 2 ~ )  the fluid motions are 
governed by the boundary conditions and the conservation of the quasi-geostrophic 
potential vorticity q following the geostrophic motion : 

where 

Here $ is the stream function of the geostrophic velocity, subscripts denote partial 
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derivatives and J (a ,  b) = a, b, -ay b, is the Jacobian derivative. Variables have been 
non-dimensionalized in the standard manner and B, the Burger number, is given by 

B = N 2 H 2 / f 2 L 2 ,  (1.3) 

where f is the Coriolis parameter, N the Brunt-Vaisala frequency, and H the vertical 
and L the horizontal lengthscales used in the non-dimensionalization. 

Provided the boundary conditions are inviscid, any steady zonal flow U( y, z )  is an 
exact solution of (1 .1)  and the evolution of a perturbation $‘ to U is governed by 

q;+Uq:+Q,$I::+J($’,q‘) = 0, (1.4) 

where Q,  denotes the lateral gradient of the potential vorticity of the basic zonal flow 
and qf the potential vorticity of the perturbation. The stability of U ( y , z )  to very 
small wave-like perturbations of constant shape 

$’ = Re{p(y,z)exp[ik(x-ct)]} (1.5) 

( U - c ) q ‘ + Q y $ ’  = 0 (1.6) 

is hence determined by the well known equation 

and its boundary conditions. 
Under inviscid boundary conditions the Burger number is the only non- 

dimensional combination of the imposed conditions on which the solutions of 
equations (1 .1)  and (1.6) depend. The evolution governed by (1 .1)  of waves growing 
from small amplitude is most easily studied at  Burger numbers close to a value, B, 
say, a t  which there is a neutrally stable wave with stream function $s and real phase 
speed cs. The initial growth rate of such waves and the amplitude to which they grow 
then tends to be small. Consequently the advection of the wave by the zonal flow 
dominates that by the wave itself in much of the flow. Where this is the case the 
stream function can usefully be expressed as a summation, 

in which 6 is B,-B raised to a suitable (positive) power (Pedlosky 1970; Drazin 
1970). The equations governing the wave’s evolution can be reduced to a series of 
forced linear problems 

(1.8) 

(cf. (1.6)) in which R, is an expression which includes only terms $,,, and qm with 
m < n. 

Close to B, the stream function $‘ of the growing wave is dominated by the stream 
function $rS of the neutral mode itself. The (nonlinear) self-interaction of the slowly 
growing wave J (Re  $’, Re q‘), is dominated by 

(u-c) q n  + Qy $n = Rn 

(1.9a) 

unless (1.9 b) is identically zero. The first equality above follows from (1.6) and the 
second from the definition of the Jacobian. The discussion of this equation in the next 
three paragraphs contains the main points of the paper. 

The first of the two terms on the right-hand side of (1.9b) is identically zero for 
waves on laterally uniform flows U ( z ) .  For most laterally sheared zonal flows U(y, z ) ,  
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however, a/ay{Q,/(U-c)} is not identically zero; contours of the stream function and 
the potential vorticity (P.v.) field of the neutral mode do not coincide and the neutral 
mode advects its own p.v. field. The second term on the right-hand side of (1.9b) is 
also identically zero for neutral modes subject to inviscid boundary conditions on 
laterally uniform flows U(z )  which increase monotonically with z (U,  > 0 ) ,  for such 
neutral modes may be taken to be purely real-valued. Thus the dominant nonlinear 
interaction for inviscid waves depends significantly on the lateral shear of the zonal 
flow. 

Neutral modes subject to  Ekman pumping on laterally uniform flows have vertical 
phase shifts and complex-valued stream functions. Hence the second term on the 
right-hand side of ( 1 . 9 b )  can be non-zero for these modes and represents their 
dominant nonlinear interaction. It is doubtful, however, that  diffusive fluxes in the 
interior can be consistently neglected for such waves, particularly since Qy need not 
be zero a t  their steering levels. The evolution of waves which are subject to  Ekman 
pumping is not considered in detail below for this reason. 

For inviscid waves on a laterally sheared flow, the ratio of the second to the first 
terms on the right-hand side of (1 .9b)  is of order ciRe$.,/{JU-c1 Im$-,}. This ratio 
will always be smaller than or of order 1, so in comparisons with other terms one can 
limit attention to  the first of the two terms on the right-hand side of (1 .9b) .  Close to 
the surface on which U is equal to cs,  which will be referred to as the steering level 
(despite the fact that it may not be flat), ql+ Uq; w ( U - C , ) ~ ;  is small for a slowly 
growing wave. The nonlinear advection thus dominates the growth rate and linear 
advection of q near the steering level. From (1.4) and (1.9) i t  is clear that  this is true 
whether Q,/(U-c,)  is bounded at the steering level or not. The self-advection of the 
wave is of the same order of magnitude as the advection by the zonal flow within a 
region of depth directly proportional to the amplitude of the wave. Within this 
region, in a time which is inversely proportional to  the amplitude of the wave’s 
stream function, many zonal harmonics of the wave’s potential vorticity field are 
excited to amplitudes of the same order of magnitude as that  of the potential 
vorticity of the fundamental. Outside this layer, the self-advection generates only a 
zonal flow and the second harmonic of the wave (sin 2 k z )  a t  an amplitude comparable 
with the square of the amplitude, A ,  of the fundamental wave (i.e. of O(A2)) .  
Advection of these by the fundamental produces corrections to the fundamental only 

In order to show that the evolution of the wave as a whole is determined by the 
advection within the (narrow) critical layer rather than in the bulk of the interior or 
at the boundaries, the boundary conditions must be considered. We assume that the 
fluid is confined within horizontal boundaries at z = -$, $ and vertical boundaries a t  
y=O,  1 through which there is no normal motion. When combined with the 
thermodynamic equation and the Ekman pumping formula the absence of vertical 
velocity a t  the horizontal boundaries yields 

of o(~3) .  

$zt + JW,  $A = * E($r, ,+ $yy) at z = +t. (1.10) 

The precise value of the Ekman pumping parameter is not important here. I n  the 
presence of Ekman pumping steady zonal flows with lateral variation generally do 
not satisfy this condition. For flows that do (e.g. any flow in the absence of Ekman 
pumping) analysis corresponding to (1.4)-( 1.8) yields 

(U-cS) $nz- uz $n + i4$nzz i- $nyy) = Sn (1.11) 

where Sn is the counterpart of Rn in (1.8). 
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Provided the steering lcvel is not near the boundaries the main self-interaction of 
the growing wave there is 

= Re $s Re $szt{ &} k E J (  Re $s, Im {w}). u- cs (1.12) 

For laterally uniform flows the first term on the right-hand side of (1.12) is again 
identically zero and when Ekman pumping is present the vertical variations in the 
azimuthal phase of the wave, sustaining it against spin-down, give rise to the 
dominant nonlinear interactions, either at the endwalls ((1.12) and Drazin 1972) or 
in the interior (see (1.9)). For the more general case of a laterally sheared zonal flow, 
providing the steering lcvel is confined to  the flow interior so that zonal advection 
dominates, the (self-induced) boundary forcing generates only the second harmonic 
of the wave and a correction to the axisymmetric flow a t  amplitudes of O(A2) .  No 
self-induced forcing arises a t  the sidewalls. 

Outside the critical layer, the interior equations (1.8) can be interpreted as 
formulae for the vertical derivative of $5. whose values at the upper and lower 
boundaries are constrained by (1 .11) .  The influence of the critical layer on the flow 
outside it is determined by the jump in $; across it. Within the critical layer q’ is a t  
least of O(A) and variation of the horizontal advection of q’ with height will ensure 
that the stretching term is of the same order as q’. The jump in the 
fundamental wave’s values of $; across a critical layer whose depth is of O(A)  is hence 
at  least of O(A2).  By comparison the nonlinear thermal advection a t  the boundaries 
(given by (1.12)) can only affect the fundamental wave at  O(A3) and the advection 
of potential vorticity in the bulk of the interior similarly affects the difference 
between the values of the fundamental of $; a t  each boundary only a t  O(A3). 

We conclude from the above discussion that the arrest of the growth of inviscid 
waves growing from small amplitude on laterally sheared baroclinic flows is 
qualitatively different from that on laterally uniform flows and that the evolution on 
laterally uniform flows is not structurally stable (i.e. i t  is not robust to the 
introduction of small lateral variations in the zonal flow). On the laterally sheared 
flow the lateral structure of the neutral wave is complicated enough for it to advect 
its own potential vorticity field (see (1.9)). This advection is at least comparable with 
that by the zonal flow within a layer centred on the neutral mode’s steering level 
whose (non-dimensional) depth is of the same order as the amplitude of the wave. 
The fully nonlinear advection within this narrow layer has a larger effect on the 
fundamental wave than the nonlinear advection a t  the boundaries or in the rest of 
the interior and is hence the first to change the linear growth rate of a disturbance 
growing from small amplitude. 

Sections 2 and 3 present detailed calculations illustrating this evolution on an 
f-plane for the flow 

(1.13) U = t (  1 -as + as sin ny) sin nz, 

which supports neutral normal modes of the form 

$s = ps ( y) cos kx, cs = 0. (1.14) 

The calculations are particularly straightforward for this case because Qy/( U -  cs) is 
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bounded a t  the steering level and the steering level is horizontal, lying on the plane 
z = 0. In $2 the domain is divided into a region surrounding the steering level and 
two outer regions and the solutions in each region matched together. The resulting 
equation describing the evolution of the wave amplitude and of the potential 
vorticity in the critical layer is similar to that obtained by Warn & Gauthier (1989), 
but is difficult to  solve analytically. Numerical solutions are presented in $3. 

Various features and deficiencies of these solutions and their relationship to other 
recent work are discussed in $ 4  whilst $5 contains a discussion of the relevance of the 
solutions to  the flows obtained near the upper axisymmetric transition in the 
differently heated rotating annulus experiments (Hide & Mason 1975). This paper 
developed from attempts to understand these flows, and joint laboratory and 
numerical investigations of them appear to be the most promising approach to 
determining whether the processes described here are important in real fluids. 
Concluding remarks are made in $6. 

2. Analysis of a nonlinear baroclinic critical layer 
2.1. Problem dejinition 

The quasi-geostrophic equations for an f-plane will be assumed to govern the motion : 

$.,,+J($,$.,) = 0 on z = +i - 27 (2.3) 

$ , = O  and !Put = O  on y = O , l .  (2.4) 

Equation (2.1) represents conservation of the quasi-geostrophic potential vorticity 
(2.2) following the geostrophic motion. Equation (2.3) represents conservation of 
potential temperature a t  the horizontal boundaries where the vertical velocity 
vanishes in the absence of Ekman pumping. No normal flow and energy-conserving 
conditions on the zonal mean stream function Yare  applied a t  the side boundaries 
(2.4). The stratification is taken to be independent of height and the channel to be 
periodic in x with non-dimensional repeat length 1,. The zonal flow is assumed to be 
an internal baroclinic jet (Charney & Stern 1962) of the form 

U = $sinm ( 1  -as+ as sin n y ) .  (2.5) 

This flow is studied at a Burger number slightly smaller than that at which there is 
a neutral mode which advects its own potential vorticity field (see (1.9)). The 
evolution of the only unstable weakly growing normal mode is traced as it grows 
from a very small initial amplitude. 

The form of the neutral normal mode and the appropriate scalings are summarized 
first. The outer solutions (i.e. those outside the critical layer) are then developed and 
the jump conditions across the critical layer established. Presentations of the inner 
solution and the matching of the inner solution with the jump in the outer thermal 
field across the critical layer follow. Finally formulae are derived for the unstable 
linear normal mode in the inner and outer regions (which serve as the initial 
conditions). The key formulae are summarized a t  the end of the section. 

The potential vorticity fields of the inner and outer solutions will be denoted by 
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p and q respectively and the inner and outer stream functions by q5 and $. P ,  Q, @ 
and !P denote the corresponding zonal mean fields. 

2.2. Neutral mode solution 
BQ,/U is well defined for (2.5) and independent of height: 

B&Y = Bx2as sin xy 
(2.6) U + 1 -as +assin xy 

Direct substitution in (2.1)-(2.4) shows that 

$s = ps (y) cos rxx  with r = 211, (2.7) 

is a stationary solution (cs = 0) of the quasi-geostrophic equations linearized about 
the zonal flow (2.5) when ps is the gravest mode solution of 

n2as sin x y 
PYV + 1 -as + as sin xy 

p = O  on y = O , l ,  

and the Burger number, B, is related to the gravest mode’s eigenvalue, As, by 

x2 
B =  = B,. 

As + r2n2 

This neutral mode solution is clearly non-singular and independent of height. Bell & 
White (1988) (and Bell 1989) show that the normal mode which springs from this 
neutral one as B is reduced is the only unstable normal mode a t  values of B just 
smaller than R,. 

2.3. Scaling considerations 
The Burger number is assumed to be just less than B,:  

B = B,-AB. (2.10) 

As shown by Bell & White (1988) (and in Appendix B) the normal mode growth rate 
is then of O(AB). So we introduce an appropriate slow time 7: 

7 = mt. (2.11) 

Harmonics and nonlinear corrections to the dominant wave mode are generated by 
the neutral mode’s self-advection at a rate of O(A2) ,  A being the wave amplitude. So 
the nonlinear advection can combat the linear growth if 

A = ABa(7) ,  (2.12) 

a(7) being of O( 1 )  when linear growth and nonlinear advection become comparable. 
Since within the critical layer the zonal velocity U of (2.5) is of the order $2,  the 
critical layer has a depth of O(AB) (for z 9 AB zonal flow advection dominates). So 
the stretched vertical ordinate y, 

z = my, (2.13) 

will be used within the critical layer. The inner solution has domain - co < 5 < + co 
and for [+ co must match the outer solutions for z + O * .  
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2.4. Outer solutions 
Two outer solutions are required; one above and one below the critical layer. The 
equations governing the two are very similar and for the most part they will not be 
painstakingly distinguished. We pose the perturbation expansion for the stream 
function suggested by (2.12) 

$ = Yo+AB$l+AB2$,+ ... (2.14) 

in which Yo is the stream function of the zonal flow (2.5). Substituting into (2.1) 
times Bo/B and (2.3), and using (2.10) one obtains at O(AB): 

(2.15) 1 Mo $1, (Bo Vi + a2/aZ2) $1, + (BQu/~)i+q,  $1, = 0, 
$12,=0 on z =  - +I 2 ’  

So the outcr solution to first order is proportional to  the gravest mode solution : 

= {a(~)cosrm+b(~)sinmx}ps(y) .  (2.16) 

Strictly speaking the most general outer solutions should be matched across the 
critical layer to reach this conclusion ; but the depth-independent solution (2.16) does 
satisfy the inner equations a t  lowest order as will become apparent. An undetermined 
x-independent perturbation should also be retained a t  this point but examination of 
the problem a t  the next order ((2.17) below) shows that it is not excited a t  this order. 

Mo $2, = -Bo/UV: $17- J($lJOV:, $l)/U+ u z z  $1a!/(Bo U ) ,  (2.17) 
$22z = 0 on x = &$. (2.18) 

The left-hand side of (2.17) involves an elliptic operator (defined in (2.15)) on and 
the right-hand side terms -BOqlT/U and - J($.,, Boql) /U which are singular a t  
z = 0 on the edges of the two domains. The forcing terms on the right-hand side of 
(2.17) do not induce any axisymmetric motions as anticipated in (2.16). Equations 
(2.17) and (2.18) become a well-defined problem if jump conditions on $, and $22 

across z = 0 are specified : 

[3#21$ = H ( x ,  y) ; [$z21$ = 4x9 y). (2.19) 

At O(AB2) (2.1) times Bo/(BU) and (2.2) yield 

H ( z ,  y) and I ( z ,  y) are understood to  depend on the inner solution. 
As shown in Appendix A, (2.17)-(2.19) have solutions provided 

This (Fredholm type) condition ensures that l(z, y) does not resonantly force (2.17) 
by projecting onto the unforced neutral solution. 

2.5. Inner solution 
From (2.2) and (2.13), the potential vorticity in the critical layer, p ,  is related to the 
stream function, 4, by 

(2.21) 
1 

Bp = Bf + BVE 6 + $55. 

The conservation of potential vorticity, (2.1), is expressed by 

W B p , +  J (6 ,Bp)  = 0. (2 .22 )  
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We pose a series expansion for $ in powers of All: 

$ = AB#1+AB2$2+AB3$3+.... (2.23) 

For 5-t k 00, $ must match to the outer solution with z + 0’ which is given to O(AB) 
by 

+out = A B { ~ X [  - A A B ~  (x5)3 + o(m4)) { - (1 -as) + asin cos Ry} 

+hB(a(7) cosrxx+b(7)sinrxx)ps(y)+O(hB2). (2.24) 

The terms of O(hB3)  in (2.24) describe the initial zonal mean flow to O(AB3). They are 
included for reference in the derivation of (2.31) below. 

At 0(1) (2.22) is 
$1<<r + J($17 $1,) = 0. 

A (barotropic wave) solution which matches to the outer one is 

US (1  -as) y -- cos 71:y + ps( y) ( 4 7 )  cos rxn2 + b(7 )  sin r x x ) .  x 

The mean flow in the outer solution is time independent so d j l r  = 0. 
At O(AB) (2.22) is 

The partial solution 
42ccr + J($ l> $255) = 0. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

in which the ~ ( ” , ~ ) ( y )  are eigenfunctions of M, (see (2.15) and Appendix A), is 
adequate. Solutions with $2a non-zero would require potential vorticity gradients of 
0 ( 1 )  which cannot develop for 5 of 0(1) since p is conserved by the horizontal 
geostrophic motion. (Such solutions are probably important in the development of 
flows with singular critical levels.) Wave solutions directly proportional to [ are not 
requircd because the O(AB) outer streamfunction (2.16) is barotropic (i.e. $: = 0). 

At O(AB2), the highest-order considered here, (2.22) is 

Pl,+J($,,Pl) = 0, (2.29) 

where BPI = Bo v:, $1 + # 3 a .  (2.30) 

Equations (2.29) and (2.30) assert that the O ( h B )  potential vorticity, p,, is conserved 
following the O(AB) geostrophic motion. Using (2.24) one finds that the zonal flow by 
itself initially has 

I i 71: 

a 
BP, = ix3c (1 -u~)y - ( l+B0)“cosxy  . (2.31) 

The inviscid boundary conditions (2.4) imply that $; = 0 on y = 0 , l  and (2.26) with 
(2.8) implies that  $igg = 0 on y = 0 , l  so 

p t = O  on y = O , l .  (2.32) 

Furthermore djly7 = 0 and c#j3y7 = 0 on y = 0 , l .  For a pure wave perturbation 
c#j3 = 0 at time 7 = 0, so using (2.31) 

BP,, = $x3{( 1 -a,) on y = 0 , l .  (2.33) 



A wave on a laterally sheared baroclinic $ow 623 

2.6. Matching condition 

For the inner, q5, and outer, $, solutions to match, they and their derivatives must 
agree over an intermediate range of depths z, < zo < zb in which zo/AB+ 00 and 
zo +- 0 as AB + 0. Within this range of depths we thus require 

(2.34) 

For the solutions presented above, to O(AB2) (2.34) is 

ABe[~L,]:I$ = AB2 [-im q5&dd(;. (2.35) 
C--m 

Using (2.35), the solvability condition (2.20) can be expressed as 

2.7. Initial conditions 
An appropriate initial condition for the perturbation stream function is that of the 
linearly unstable normal mode (though see Warn & Gauthier 1989, $2(ii)). As shown 
in Appendix B the normal mode with an initial outer stream function of small 
amplitude y ,  

4; = Y cos (rWPs(Y), (2.37) 

has accompanying vertical variation 

in the critical layer. In (2.38) 

with 

iABT 0 = $ABxd(;(l-a,+a,sinxy) and c = - 
2% 

(2.38) 

(2.39) 

(2.40) 

2.8. Summary 
The above analysis treats the development of a wave which starts as a slowly 
growing normal mode disturbance of small amplitude on a baroclinic zonal flow 
which has Qy = U = 0 on z = 0 (see (2.5)). It is set at  a Burger number, Bo-AB, 
where this wave is the only linearly unstable normal mode. The wave is governed by 
its evolution in a critical layer with a depth of O(AB) and grows to an amplitude of 
O(AB). Its stream function to O(AB) is barotropic both inside and outside the critical 
layer (see (2.26) and (2.16)) and has the same spatial form as the neutral normal mode 
(2.7). The O(AB) potential vorticity within the critical layer, p ,  as defined by (2.30), 
is conserved following the O(AB) geostrophic motion (2.29). Boundary conditions on 
p ,  are provided by (2.32) and (2.33) and the amplitudes a(7) and b(7) of the O(AB) 
wave stream function are determined by the constraint (2.36) which ensures that the 
jump in the thermal field across the critical layer (resulting from potential vorticity 
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advection within i t)  does not resonantly force the neutral normal mode outside the 
critical layer. 

3. Numerical solutions 
3.1. Method 

Numerical solutions for the potential vorticity in the inner region have been obtained 
using a gridpoint model with variable vertical and horizontal resolution. On the IZth 
level a uniform grid is employed with IXP(I2)  points along-stream and IYP(I2) 
points within the channel across-stream. The cross-stream gridpoints straddle the 
boundaries y = 0 , l  and conditions (2.32) and (2.33) are applied using second-order- 
accurate formulae. Forward steps of (2.29) are performed by the leapfrog method 
with the source function J(q51,pl) evaluated according to Arakawa’s energy and 
enstrophy conserving formula (Haltiner & Williams 1980). Explicit horizontal 
diffusion is invoked to dampen small scales, so that in place of (2.29) the equatidn 
being integrated is 

Standard four-point formulae are used for the Laplacian operators and the additional 
homogeneous boundary condition 

P1T = - J(#J 1’PA + va v; Pl --vbVi?l Pl = 8 1 .  (3.1) 

V ; p l = O  on y = O , l  (3.2) 

is used when vb is non-zero. A very weak Robert filter with coefficient R,  is employed 
to dampen the computational mode ; the resulting error in the source function is 

AS1 = ~ 1 , ~  Ar2Rp, (3.3) 

Ar being the timestep. I n  all integrations the initial forward step is specified to be one 
eighth of the standard length and Miyakoda’s method (Hoskins & Simmons 1975) 
used to reach the standard step length. 

In  the experiments reported here, for -2cl c 5 c 2c1 (i.e. close to the steering 
level) the vertical spacing (DZ1) and horizontal spacing are independent of depth and 
5 = 0 is chosen to be one of the levels. The numbers of points along- and across- 
stream in this region are denoted by IXPTS and IYPTS respectively. In order to  
obtain an r% relative error in the initial growth rate, the depth of the domain, h, 
must be great enough that the integral 

I (h)  = r: = 2 arctan (h /c l )  (3.4) 

is within r% of I ( h  = 00). For a 5% error in I ( h )  we need h > 16c,. Manipulation of 
standard formulae bounding the error in evaluations of I by the trapezoidal rule 
(Kreyszig 1982) suggests that the contribution to the error is (roughly) the same from 
each layer a t  large values of 161 if the level spacing is proportional to 151;. The level 
spacing is specified to grow a t  this rate for 151 > 2c1. 

Since the zonal flow is proportional to  5, for large values of 151 the zonal flow is very 
strong. I n  order to  satisfy the CFL stability criterion the horizontal resolution must 
decrease with l/l(l, or the timestep be inversely proportional to the height of the top 
level. Since good horizontal resolution is only required near the steering level the 
former option is used and for 151 > 2c1 

IXP(I2)  = IXPTS/ (glgl (IZ)/C1). (3.5) 

IYP(I2) varies similarly with 5. 
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FIGURE 1 .  The evolution of the amplitude, u ( T ) ,  of the wave (2.16) as a function of the slow 
time r = ABt during experiment A. 
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'b 

'd 

A 

128 
64 
26 
0.035 
2.64 
3 x 10-8 
0 

B C 

128 128 
64 64 
26 22 
0.035 0.035 
2.64 1.4 
3 x 10-9 
0 0 

3 x 10-8 

D 

64 
32 
22 
0.035 
I .4 
3 x 10-8 
0 

E 

128 
64 
13 
0.07 
2.19 
3 x 10-8 
0 

F 

128 
64 
26 
0.035 
2.64 
0 
2 x 10-4 

TABLE 1. The parameter settings used in the numerical experiments described in $3 

In order to reduce the computational cost, advantage was taken of symmetries 
present in the initial conditions and retained by solutions of the governing equations 
which are derived in detail in Bell (1989). In particular b(r) retains its initial value 
of zero and p ,  below 5 = 0 may be inferred from p ,  above 5 = 0 using 

P,(--X+1,/2,% -0 = -P,(X,Y,C). (3.6) 
Finally it is desirable that the initial amplitude of the wave be chosen to ensure 

that initially p ,  has no closed contours within the critical layer. These form first (as 
y is increased) near the sidewall. Comparison of the initial fields of P,, and piy  shows 
that lPlyl > lpiy1 and hence there are no closed contours when 

YIPsyl < c1 at y = 091. (3.7) 

3.2. Results 
In all the experiments to be presented the zonal flow has a, = 0.5 (see (2.5)) and the 
channel aspect ratio I ,  = 27r. For these settings the linear growth rate c1 x 0.175. 
Each integration starts from the linear normal mode solution with an initial 
amplitude y = 0.02 (which satisfies (3.7)) a t  time r = 0 and proceeds for at  least 1800 
steps to r = 27. 

In experiment A there are 10 equally spaced levels between g = 0 and 5 = 0.35 = 
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FIQURE 2. Contour plots of the lowest-order p.v. field Bp, (defined by (2.30)) on level [ = 0.105 
within the critical layer obtained during experiment A at slow times (a) 7 = 0, (21) 7 = 9, (c) T = 18. 
The contour interval is 0.2 and negat.ive contours are dashed. 

2c,, their spacing DZ1 being 0.035. On each of these levels there are 128 points along 
the channel and 64 points across it,  i.e. IXPTS = 128 and IYPTS = 64. There are 26 
levels at or above g = 0 in all, the highest being at  5 = 2.64. On this level IXP = 16 
and IYP = 8. The domain covered extends to  about 5 = 2.87 so the vertical 
truncation of the domain is expected to  introduce a relative error of about 5 YO in the 
initial growth rate. In  order to simulate the inviscid problem, biharmonic diffusion 
was employed with weak dissipation coefficients : vd = 0, v,, = 3 x lo-*. 

The parameters detailed above for experiment A are summarized for all the 
experiments in table 1. The timestep used for all experiments is A7 = 0.0015. This 
comfortably satisfies the CFL condition on all levels. Solutions were found to be 
insensitive to the Robert parameter R, provided it lay between and lo-'. In  all 
experiments presented, R, = lop3. 

The amplitude u(r) of the stream function as a function of time in experiment A 
is plotted in figure 1. It reaches a first maximum near 7 = 16, a minimum near 
r = 32 and a second maximum near r = 44. Clearly the integration is too short to  
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FIQURE 3. Contour plots as in figure 2 but for the stream function with a contour interval of 0.02. 
The evolution ofthe line segment ACB is discussed in 94. C' denotes a stagnation point ofthe flow. 

determine whether the flow will reach a wave-like steady state or vacillate 
indefinitely. Figure 2 depicts the potential vorticity field multiplied by B, Bp,, on 
level g = 0.105 at  times 7 = 0, 9 and 18. The stream function on the same level at 
these times is presented in figure 3, and Bp,  a t  times T = 27, 36 and 54 in figure 4. 
In the latter figure B p ,  is clearly assuming h e  structure and large gradients with 
sharp corners in the contours of constant Bp,. Irreversible deformation of the p.v. 
contours (McIntyre & Palmer 1985) due to advection by the stream function is 
certainly occurring within non-dimensional depths of the order of ABc, of the 
steering level. Figure 5 displays the solution on level 6 = 0.21 at times T = 0, 18 and 
27 where the distortion of the potential vorticity field is less intense. At the highest 
level in the simulation (not shown) Bp,  is dominated by the zonal flow and the wave's 
perturbation to the contours barely perceptible. The qualitative nature of the 
solutions is discussed further at the start of the next section. 

Experiments B-E were performed to investigate the sensitivity of experiment A to 
various parameters. Figure 6 presents the fields of B p ,  obtained in experiments B, C 
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Y 

X 
0 

FIQURE 4. Contour plots of potential vorticity as in figure 2 at times (a) 7 = 27, ( b )  7 = 36, 
(c) 7 = 54. 

and D at time T = 27 on level g = 0.105 which may be compared with that for A 
(figure 4a) .  Table 2 provides the values of the amplitude a(?) obtained in each 
experiment a t  times T = 9, 18 and 27. 

Experiment B is a repeat of A with the diffusive parameter reduced by a factor of 
10. At this setting diffusion cannot quite control the grid-scale roughness which 
develops from corners in the Bpl contours (see figure 6a) .  The amplitudes obtained 
in A and B nevertheless agree to  within 1 % for T < 18 and 3% at T = 27. I n  areas 
with strong gradients of Bpl the contours are noticeably tighter in experiment B then 
A. The lack of tightening of contours in experiment A after T = 27 (figure 4) may thus 
be due to the diffusion used. 

Experiment C is a repeat of A except that the top four levels used in A are not 
present in experiment C. In  C, I (h)  is evaluated with h = 1.60. The ratio of the 
amplitudes obtained during A and C at T = 9 is comparable with the ratio of their 
values for I (h) .  Comparison of figures 6 ( a )  and 6 ( b )  shows that the advection is 
slightly further advanced in experiment C in which the wave amplitude is generally 
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FIGURE 5. Contour plots of potential vorticity as in figure 2 but for level f: = 0.21 with a 
contour interval of 0.5. 

larger (for 7 c 27). Experiment D is a repeat of C with the horizontal resolution in 
each direction halved on every level. On the top level, 6 = 1.40, IXP = 16 and 
IYP = 8. The diffusive parameter is too small to control grid-scale roughness fully 
(compare figures 6a  and 6c) but the amplitudes in experiments C and D agree to 
within 2 O/O for T < 18 and within 4% at r = 27. Finally experiment E is a repeat of 
A except that the vertical spacing between levels is doubled whilst the top of the 
domain is almost unaltered (h  = 2.53). Differences between A and E are very slight 
(see table 2) and may be accounted for by the slight drop in h between A and E (cf. 
A and C). 

We conclude that the qualitative form of the variation of the amplitude in figure 
1 is representative of that for the inviscid problem but that the amplitude at the first 
maximum is probably about 5 ?4 larger than would be obtained in the inviscid case. 
The potential vorticity fields from run A are also fairly reliable but probably 
underestimate the strongest gradients when T > 18. 
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FIQURE 6. Contour plots of Bp, at time 7 = 27 and level 5 = 0.105 obtained during (a) experiment 
B, (b) experiment C, (c) experiment D. The corresponding plot for experiment A is figure 4(a). 

4 7 )  7 = 9  r = l 8  7 = 2 7  

A 0.0905 0.1687 0.0924 
B 0.0901 0.1692 0.0956 
C 0.0943 0.1739 0.0939 
D 0.0922 0.1750 0.0977 
E 0.0908 0.1693 0.0925 
F 0.0778 0.1238 0.051 

TABLE 2. The amplitude of the wave, a(7) ,  obtained at three times in each of experiments A-F 

A single experiment, F, is presented to illustrate the effect of moderate diffusion 
on the potential vorticity evolution in the critical layer. F is a repeat of A except that 
v,, is set to zero and vd = 3 x Figure 7 displays the fields of Bp1 obtained for 
experiment F on level 5 = 0.105 at times T = 9, 18 and 27. Comparison with figure 1 ,  
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FIGURE 7 .  Contour plots of Bp, on level 6 = 0.105 obtained during experiment F (in which 
v,, = 2 x at times (a) 7 = 9, ( b )  7 = 18, (c) 7 = 27. 

which displays the corresponding fields for experiment A, shows that the distortion 
of the field of Bp, is severely limited by diffusion of this order. From table 2, it is clear 
that the diffusion also retards the initial growth of the wave, indeed when vd > 
the inviscid normal mode analysis on which the work of $2 is based is probably 
inappropriate. 

4. Discussion 
4.1. Qualitative nature of solutions 

The qualitative nature of the evolution of the potential vorticity fields presented in 
the last section is perhaps most easily grasped by consideration of the advection of 
a segment such as AB in figure 3 (b )  by the stream function shown in that figure. Note 
that AB follows closely an original q-contour (figure 2a) .  Point A is advected about 
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a closed streamline encircling the centre of the domain whilst B is advected about the 
other gyre and a point close to C must be advected ever more slowly towards the 
stagnation point C’ of the flow. After the fluid parcel a t  A has circlcd n times around 
its gyre, the advected segment must spiral (at least) n times around the gyre’s centre 
before connecting to the parcel originally a t  C, which has moved close to C’. 

When the stream function is steady, all parcel trajectories are orbits or fixed 
points. It is an intrinsic feature of the problem posed in this paper, however, that the 
shape of the stream function in the critical layer and the location of C’ changes with 
the amplitude of the wave. Which gyre a parcel passing close to C will circulate next 
depends on the precise amplitude of the wave. If the amplitude of the wave never 
attains a steady value, fluid parcels passing close to  C will follow chaotic trajectories. 

The description given by Rhines & Young (1983) of the (coarse-grain streamwise) 
homogenization of passively advected tracers by cross-stream shearing provides an 
alternative view of the evolution of the p.v. fields. The force-like nature of this 
homogenization, which is directed so as to weaken the zonal flow, is cxplained in 
Rhines & Holland (1979, equations 8 and 16). 

4.2. Comparisons with other work 
Maslowe (1986) gives a useful review of nonlinear critical layers in shear flows. The 
problem that has been studied in most detail is that of a forced barotropic Rossby 
wave impinging on a critical layer (Stewartson 1978; Warn & Warn 1978). Here the 
nonlinear advection occurs chiefly within Kelvin’s cat’s eyes centred on the critical 
level of the forced wave. More recently, Churlov & Shukhman (1987) have studied the 
nonlinear development of a wave growing from small amplitude on a slightly 
supercritical two-dimensional unbounded shear flow. I n  this problem (see their $9) 
the critical layer is non-singular and the waves again have the form of cat’s eyes in 
the critical layer. As already noted, Warn & Gauthier’s (1989) study of waves on a 
marginally unstable baroclinic flow is closely related to  the present work. The stream 
functions in their critical layers are of a similar wave-like form to those of this paper 
(though their shapes are independent of time). The main differences between the 
papers are that this one concerns a continuously stratified fluid and a laterally 
sheared zonal flow whilst they consider a two-layer fluid and a laterally uniform 
zonal flow. Unstable waves on laterally sheared baroclinic flows have been 
investigated by James (1987) and Feldstein & Held (1989). The barotropic linear 
shear considered by James gives rise to  a strongly sloping steering level but does not 
affect the p.v. gradient and is thus complementary to that discussed here. Feldstein 
& Held’s numerical study with a two-layer model is again complementary to  this one 
as i t  focuses on waves growing on one part of a flow and impinging on singular critical 
layers in other parts. 

4.3. Non-generic aspects of the problem posed 
Two aspects of the problem posed in $ 2  are rather artificial and ‘non-generic’. First, 
the steering level of the neutral mode is flat. Horizontal advection by the neutral 
mode consequently can advect a fluid parcel right across the fluid’s domain. When 
the steering level varies strongly with the lateral ordinate, the problem on each 
horizontal level is more similar to that of a two-dimensional zonal shear flow and 
Kelvin’s cat’s eyes will form. For waves whose velocities are of sufficiently large 
amplitude compared with those due to the lateral shear of the zonal flow these cat’s 
eyes will extend across the whole of the flow and the flow patterns will resemble those 
studied in this paper. 
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The non-singular nature of the critical level is the second ‘non-generic’ feature. 
There is no particular reason why the contours of constant Qa, should coincide 
precisely with isotachs of the zonal flow. Hence even if there is a contour on which 
Qv = 0 the steering level will not usually coincide with it precisely. Neutral modes on 
such flows have singular values of potential vorticity at  the steering level (see (1.6)). 
As noted in $2 the inner equations allow room for such fields of potential vorticity 
which are at a lower order than those that dominated the solution of the non-singular 
problem. It hence seems very likely that for very small values of AL3 the evolution 
in the critical layer will usually be quite different from that studied in this paper. 

The analysis was undertaken despite an appreciation of these points for three 
reasons. First, it  seems worth elucidating the simpler problem first, making it clear 
that the evolution in the critical layer can be important whether the steering level 
is singular or not. Secondly the calculation of appropriate singular neutral modes 
about which to pivot the analysis would by itself require a considerable effort. 
Finally the neglect of diffusion in singular critical layers would be of doubtful 
validity in many applications (particularly for rotating annulus experiments). 
Solutions, like Eady’s, which deliberately avoid complexities are usually the most 
illuminating, particularly when their limitations are clearly understood. 

4.4 Stability of solution 
Figures 4 and 6 show that strong horizontal gradients of potential vorticity develop 
within the critical layer. There are regions where the gradients are approximately 
perpendicular to the stream-function contours and of opposite sign above and below 
the critical level. Killworth & McIntyre (1985) and Haynes (1989) have demonstrated 
that Stewartson’s (1978) analytical solution, which develops similar reversals in 
potential vorticity gradients, is unstable to waves of small wavelength. It seems 
unlikely, however, that the solution developed in this paper is subject to similar 
rapid instabilities. In order to see this, note first that any solution of (2.29) excludes 
such instabilities because the advecting stream function is forced to be of the form 
(2.26). Linear perturbations to waves (other than the gravest mode) are con- 
servatively advected by (2.29). Instabilities with a wavenumber k in the x-direction 
which is higher than that of the basic wave require a perturbation stream function 
84; of wavenumber k within the critical layer. If 84; has a steady shape outside the 
steering level and moves with it, it will have hyperbolic dependence on z outside the 
critical layer : 

acosh{a(k*z) ( ~ - i ) } p ( ~ y ~ ) ( y ) ,  z > 0, 

acosh{a(k.z) ( ~ + + ) } p ( ~ * ~ ) (  y ) ,  x < 0. (4.1) 4; =[ 
By (2.34), q&. would need to be non-zero to match the jump in $iz across the critical 
layer. As noted after (2.28), this quantity is zero within a non-singular critical layer. 
In  other words the only normal mode with its steering level at  mid-level is that of the 
basic wave. So the first-order stream function in the critical layer is forced to be 
proportional to that of the neutral normal mode and instabilities involving higher 
wavenumbers are only possible in higher-order solutions. 

4.5. Neglect of vertical advection 
The restriction of the solutions of $2 to waves of moderate amplitude also emerges 
from an examination of the conditions under which the solution satisfies the quasi- 
geostrophic equations. The neglect of the ageostrophic horizontal velocities requires 
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Ro 4 AB. It is plausible that no qualitative errors would arise from their neglect but 
as we now show the neglect of vertical velocity advection also requires Ro 4 BAB. 
Let 

w = Lw*/(U,H) (4.2) 

be the non-dimensional form of the vertical velocity w*. Then according to quasi- 
geostrophic theory 

so (4.5) 

Hence the neglect of the vertical advection of potential vorticity in (2.29) (in 
particular of a term of the form w&.lAB) compared with the horizontal advection 
requires that Ro Q B2 (ABIB). 

Note, however that this condition concerns the validity of the quasi-geostrophic 
equations. The conservation of potential vorticity in these equations is simply an 
analogue of the conservation of Ertel potential vorticity following parcels on 
isentropic surfaces. Hence (4.5) need not be viewed as a necessary condition for 
evolution in a critical layer to  be relevant. 

4.6. Effects of diffusive Jluxes 
Diffusive transports have been deliberately neglected (or in the numerical solutions 
minimized) to this point in the interest of formulating a well-posed problem. A zonal 
flow which is laterally sheared at  the horizontal boundaries will, in a viscous fluid, 
induce Ekman pumping of axisymmetric vertical motion which will affect the whole 
of the flow. The stability of such a zonal flow with its meridional circulation is a 
major problem in its own right. 

Diffusion will, of course, play a dominant role in the critical layer (Drazin & Reid 
1981, p. 421) when the wave amplitude is small enough. Conditions under which 
advection dominates diffusion may be found by inserting the scaling used in 52 into 
the diffusive version of the potential vorticity equation, which in dimensional form 
is 

D* q* 
N =  az*2 

- = (V*V,*2 f 
Dt* 

At O(AB2) in the critical layer one obtains 

where v = V*/(u,L) and K = K*/ (UOL) .  (4.8) 

The inviscid critical layer theory requires 

and v 4 A B .  
H 2  B3 (4.9) 
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The generation of sharp gradients of B p ,  within the critical layer makes dissipative 
processes important even when ABIB is large enough for them to be formally small 
according to the above scaling arguments. Diffusive transports will control the total 
enstrophy within the critical layer and dissipate the strongest gradients of Bp,. 
Figure 7 shows that even when (4.9) is satisfied by several orders of magnitude, 
diffusive fluxes limit the gradients of Bp,  as soon as the wave reaches its first 
maximum in amplitude. 

4.7. Two-layer Juid experiments 

The order of the transition in two-layer experiments (Hart 1979) is qualitatively 
different from that found in thermally forced experiments (White 1988). As the 
inverse Froude number (the analogue of the Burger or thermal Rossby number) is 
decreased the two-layer system passes from axisymmetric flow to steady waves and 
then to  amplitude-modulated waves. In the thermally forced experiments the 
transition is usually from axisymmetric flow to amplitude vacillations and then 
steady waves. Hart  (1972) has investigated the lateral structure of the two-layer 
flows. He argues that each layer’s depth-independent axisymmetric zonal flow is 
arrested by a Stewartson type ,$ layer ( E  being the Ekman number) whilst the zonal 
motions of wave perturbations are halted by a viscous Stokes layer. The latter is 
thinner than the Stewartson layer in most experiments so that much of the 
axisymmetric flow’s lateral shear in its side boundary layer should probably be 
viewed as being within the inviscid domain of the perturbation field. For a wave with 
a phase velocity intermediate between those of the two layers, the arguments of 3 1 
imply that the wave amplitude will be governed by Landau’s equation which 
supports steady waves but not amplitude vacillations. Strongly nonlinear evolution 
in one of the layers will only occur if the layer’s zonal velocity happens to  coincide 
with the wave’s phase speed. Whilst there are particular cases in which this occurs 
(Pcdlosky 19823 ; Warn & Gauthier 1989) along most of the axisymmetric transition 
it does not. 

5. Applicability to rotating annulus experiments 
Laboratory experiments with rotating annuli are well known and have been 

reviewed by several authors (e.g. Read 1988). I n  brief, they concern a fluid contained 
within a concentric cylindrical annulus whose inner and outer sidewalls are 
conductors and whose base and lid are insulators. All the walls of the container are 
rotated together a t  a uniform rate SZ and a constant temperature difference AT is 
imposed between the outer and inner walls. For a given apparatus the post-transient 
flows which can be obtained depend chiefly on the thermal Rossby number 8 and the 
Taylor number Ta: 

0 = gaATH/(Q2L2); Ta = 4SZ2L6/(v*2H). (5.1) 

For values of 8 > 2 the flow evolves to an axisymmetric state on which only ‘weak ’ 
waves are found. Providing Tu > lo6, on slowly decreasing 0 a sharp transition, 
called the upper axisymmetric transition (UAT), to  large-amplitude azimuthally 
varying waves is found. These waves draw their energy from the available potential 
energy of the stably stratified baroclinic thermal field (Hide & Mason 1975). 

Figures 8 and 9 display horizontal cross-sections of ( q 3  evaluations of) the p.v. 
field from the numerical simulation of an amplitude-vacillating flow close to the UAT 
reported in $6 (c )  of Hignett et al. (1985). Figure 8 presents the p.v. on the model level 

P I  FLY 241 
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FIQURE 8. Horizontal cross-sections at 100 s intervals of q*, the quasi-geostrophic potential 
vorticity field, from a numerical simulation of an amplitude-vacillating flow using the 
Navier-Stokes model described by Hignett et al. (1985). The inner and outer radii and depth of the 
annulus are 2.5, 8.0 and 14.0 cm respectively and the model has 64 (azimuthal) x 16 (radial) x 16 
(vertical) points. The sections are taken on model level 8 which is 5.77 cm above the base, the 
contour interval is 0.1 s-l and negative contours are dashed. 

nearest the steering level at  100 s intervals (the vacillation period is about 600 s). 
Nonlinear advection of the potential vorticity field is clearly apparent in the 
asymmetrical and curled contours. Figure 9, which presents the p.v. and stream- 
function fields on the same level and the p.v. field near the base of the annulus over 
a period containing the maximum amplitude of the wave, shows that the p.v. field 
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FIGURE 9. (a), ( b )  (c) A re-display of q* at 5.77 cm above the base M presented in figure 8 (g), (h)  
and (i) respectively. (d) ,  (e) and (f) The pressure at the same level and (g), (h )  and (i) q* at 2.00 cm 
above the base (model level 6) for the corresponding times. The contour interval is 5 x lo-' N m-' 
in (d ) ,  2 x N m-2 in (e) and (f) and 0.2 s-l in (g)- ( i ) .  Negative contours are again dashed. 

away from the steering level and the stream function have a much less rich harmonic 
structure. 

Although figures 8 and 9 suggest that nonlinear advection of p.v. is confined to a 
narrow layer of the flow, it is not clear that the work of $52 and 3 provides the most 
appropriate description of waves near the UAT. The main problems in applying the 
theory concern the form of the axisymmetric flow, the parametric location of the 

21-2 
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UAT and the role of diffusive fluxes in the critical layer. These are now discussed in 
turn. 

The form of the velocity profile (2.5) was motivated by cross-sections of the 
thermal and zonal velocity fields obtained in numerical simulations of the 
axisymmetric flow near the UAT (see Bell & White 1988, figure 1,  for examples of the 
U ,  T and 'Qy ' cross-sections). Unfortunately, non-generic aspects of (2.5) (see $4), 
which simplified the analysis, raise doubts about its applicability. The surface on 
which U = c ,  is fairly flat, but the analogue of the Qy = 0 surface (see Bell & White 
1988, figure l c )  follows the slope of the isotherms and intersects the isotach U = c,  
of the zonal flow quite steeply. Thus the analysis in terms of non-singular critical 
layers may not be appropriate. 

The transitional value of the Burger number according to (2 .5 )  with a, = 0.5, is 
about 1.5, corresponding to a value for 0 = 6. This value is well into the weak wave 
regime at the Taylor numbers which can be explored with greatest control in the 
laboratory. For the Eady profile, inclusion of Ekman pumping brings the Burger 
number and wavenumber a t  the transition to unstable normal modes into good 
agreement with experimental results for the UAT and i t  is probable that similar 
improvements in agreement could be made for the laterally sheared flow. Evaluation 
of this point is complicated, however, by the axisymmetric vertical velocity induced 
by Ekman pumping in the presence of a laterally sheared flow. 

Conditions for the diffusive fluxes within the critical layer to  be formally small are 
provided by (4.9). Using values appropriate for the simulation depicted in figures 8 
and 9 (L = 5 cm, H = 15 cm, v* = 1.6 x lo-*, K* = 1.3 x U,, x 0.5 em s-', 
B x 0.5) and (4.8) 

v/B x lo-', KL'/(H' B3) x 5 x (5 .2a,  b )  

ABIB and (AB/B)3 can be estimated as follows. Judging from figure 11 ( c )  of Hignett 
et al. (1985) the time, T ~ ,  required for their two-lobe wave to double in amplitude is 
about 100 s. The corresponding initial growth rate k ci of the wave studied in $2 is 

kci = nrmi x inrn ABIB,, (5.3) 

where n is the number of wave lobes and the estimate of ci = ABc, follows from (B 7)  
and the remark following it. T~ (which is dimensional) is thus related to ABIB by 

(5.4) 

For the amplitude vacillation simulation r x 1/7t and n = 2;  thus 

AB/B x 7 x lo-*, (AB/B)3 x 3 x lop4. (5.5a, b )  

Comparison of (5 .2)  and (5.5) with (4.9) shows that the first of conditions (4.9) is not 
properly satisfied. Thus it may be more appropriate to compare a diffusive critical 
layer than an advective one with the annulus flow. Vertical thermal diffusion is likely 
to be of even greater importance in flows with singular critical levels (i.e. Qy + 0 
where U = q.). 

Comparison of (3.1) and (4.9) suggests that the most appropriate expression for vd 
to use for comparison with laboratory experiments is 

vd = ( K / B  + vL2/H 2, (BIAB). (5.6) 

Using the same values as in obtaining (5.2) gives vd = 3 x lo-'. The simulation with 
vd as small as 2 x lop4 had a marked effect on the evolution of Bpl, limiting the 
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tightening of contours, so we conclude that diffusive influences severely limit the 
evolution within the critical layer in the annulus experiments. An inviscid description 
might suit part of an amplitude-vacillation cycle but is not able to describe the 
maintenance of vacillation cycles. 

Increasing the Prandtl number of the fluid and/or the aspect ratio will tend to 
reduce the influence of diffusion in the critical layer, increasing the range of values 
of AB/B over which (4.9) holds and reducing the effective value of va. Jonas (1981) 
reports that the fraction of the (8, Ta)-regime diagram occupied by amplitude- 
vacillating flows increases with the Prandtl number, and D. W. Johnson (private 
communication) has found amplitude vacillation to become more widespread as the 
aspect ratio (H/L)  is increased. These results are consistent with those of Pfeffer, 
Buzyna & Kung (1980) for fluids with Prandtl numbers of 21 and 73. 

In closing we note that improved numerical simulations and further diagnostics of 
the annulus experiments are desirable. Only 16 vertical levels were used in the above 
numerical experiment. Since the vertical grid of the model is deliberately stretched 
to resolve the horizontal and side boundary layers the vertical resolution near mid- 
level is poor. Even a t  moderate supercriticalities it would be desirable to use 32 or 
64 points in the vertical t o  obtain a good resolution in the neighbourhood of the 
steering level. 

6. Concluding remarks 
The growth of weakly unstable inviscid waves on laterally sheared baroclinic zonal 

flows has been argued (in $ 1 )  to be arrested by the self-advection of their p.v. fields 
within ‘ critical ’ layers centred on the waves’ steering levels. Waves growing on flows 
with uniform p.v. gradients and inviscid waves on laterally uniform flows are 
arrested by other, weaker, nonlinear interactions. Most ‘naturally ’ occurring 
baroclinic zonal flows will have substantial lateral shears. We contend that wave 
disturbances to them will be mainly controlled by the self-advection within their 
critical layers. 

A comparatively simple and special case in which the critical layer is non-singular 
has been studied in some detail ($$2 and 3). The self-advection severely distorts the 
original p.v. structure within the critical layer generating some large p.v. gradients. 
These gradients make local diffusive fluxes much stronger than standard scale 
analysis would suggest. Detailed studies of less special critical layers on baroclinic 
flows could be very valuable. 

P.v. diagnostics from a numerical simulation of an amplitude-vacillating flow in a 
rotating annulus (figures 8 and 9) show that as the wave grows its p.v. field is 
significantly distorted near mid-level. We suggest that the growth phase may be 
characterized by almost inviscid nonlinear advection of p.v. within the wave’s 
critical layer. During the wave’s decay phase diffusive fluxes are probably important 
in eroding sharp p.v. gradients in the critical layer and re-establishing the 
axisymmetric flow. Further diagnostics of the roles of advection and dissipation in 
the critical layer in both laboratory and numerical experiments are needed to 
establish whether these suggestions are substantially correct. 

An early version of this paper formed part of the author’s Ph.D. thesis undertaken 
through the Public Research Institute Scheme at  Imperial College, London and the 
UK Meteorological Office. It is a pleasure to thank R. Hide, P. L. Read and A. A. 
White for their advice, encouragement and assistance. 
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Appendix A. Derivation of matching condition (2.19) 

expressed as (2.20). Equations (2.17)-(2.19) are 
This appendix shows that the condition for (2.17)-(2.19) to have solutions may be 

Mo $2x = -Bo/UVi $17- JW1,BO v; $ l ) / U +  u z z  $lX/(BO U ) ,  
$2zx = 0 on z = ki, 
[$2$ = H ( x ,  y) ; [$2z1$ = 4% y). 

] ( A 1 )  

The operator Mo in the first equation above is defined by (2.15) and may be written 
as 

M, = M, + a 2 / a 2 2  ; M, = B, v; + (BQJU), , ,~  . (A 2) 

M ,  includes only horizontal derivatives and for the flow (2.5) is independent of depth 
(see (2.6)). Solutions of (A 1)  can hence be expressed as a summation of the 
eigenfunctions p(ks l ) (  y) exp (irkm) of M, : 

Projection onto the eigenfunctions of MI reduces (A 1) to equations of the form 

(A 4) .i 
$i”Z’ + a(k .  1 )  (k. 1 )  = (k, 1 )  

$2 f (21, 

[$T, l)]$ = 
$it*Z) = 0 a t  z = +’ 

1 )  (k, 1 )  0’ - 1 )  
7 [$2z 10- - 

- 2  

in which a(k~l) > 0 for all modes other than the neutral mode, ps, for which = 
0. 

When d k s l )  > 0 the complementary solutions enable solutions to be found for 
any f(*pZ)(z), H(ksz)  and I(k*z). So it is adequate to consider only the projection into 
ps( y) exp ( im)  to find the condition for (A 1)  to have a solution. This projection 
results in a problem of the form 

xzz = E/sinnz+F; [XI$ = R, [x,]$ = S ;  xz = 0 a t  z = +i, (A5)  

in which, for the flow (2.5), x and F are given by 

x = p,(y) exp (irxx) $2x dx dy, F = - +/Bo y) exp ( i rn4 $lx dx dy. 

(A 6) 
(I 

(Explicit formulae for E ,  R and S are not needed below.) Integrating (A 5) once yields 

(A 7) 

(A 8) 

xZ = E/nln ItanSmI +F(z - i ) ,  

xz = E / n h  ItanimI +F(z+i) ,  

z > 0, 

z < 0, 
and hence 

[xz]CZ = F(22- 1 )  + -F as zJ. 0. 

This condition on the jump in potential temperature across the critical layer provides 
a relationship between the inner and outer solutions which must be satisfied if the 
solution sought is to be valid. It is the only consistency condition a t  this order 
because the complementary solution x = const. can accommodate any jump R in the 
stream function. Equation (2.20) is easily obtained by substituting (A 6) into (A 8). 
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Appendix B. Initial conditions 
In this Appendix an expression is found for the linearly unstable normal mode in 

the critical layer, which serves as the initial condition for the numerical simulations 
of $3. 

We start by linearizing (2.1) about the zonal flow (2.5), 

ql+Uq:+Q,Y2 = 0, 
and letting B = B,-AB and 

= Re{p(y,z)exp[im(x-ct)]}. (B 2) 

Posing an expansion for p and c in powers of AB: 

P = ABps(y)+AB2p1+...; c = ABc,+ ..., (B 3) 

based on the neutral normal mode ps, 

(d2/dy2-r2n2)pS+(Qy/U)pS = 0, ps = 0 at y = 0,1,  (B 4) 

at O(AB2) one finds that 

The Fredholm condition for (B 5) to have a solution is that the free (complementary) 
solution ps be orthogonal to the forcing of pl. This condition determines the 
dependence of c1 on AB. Standard manipulations show that c, is pure imaginary and 
that 

s o  c1 = -; T =  (B 7) 
iT 

2% pi (Q, /U)  (1 - a, + a, sin xy)-' dy 

The ratio T = B, when as = 0 and is not far from 1 for a, near 0.5. 

normal mode satisfies 
Manipulation of (2.29) using (2.30), (2.26), (2.6) and (2.8) shows that &.s for this 

( U - c )  #St;sZ = B, ( & , P I  9:,. 

+; = cos ( rxz)  Ps (Y), 

(B 8) 

(B 9) 

So the normal mode with an initial outer stream function of small amplitude y ,  

has accompanying vertical variation 

in which 
c = ABC,; ~ = ~ A B ~ ~ ( l - a , + a , s i n x y ) .  (B 11) 

Equations (2.37)-(2.40) are simply re-statements of (B 7) and (B 9)-(B 11). 
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